
Unicode指南
发布 3.9.1

Guido van Rossum
and the Python development team

十二月 16, 2020
Python Software Foundation

Email: docs@python.org

Contents

1 Unicode概述 2
1.1 定义 . 2
1.2 编码 . 2
1.3 引用文献 . 3

2 Python’s Unicode Support 4
2.1 The String Type . 4
2.2 Converting to Bytes . 5
2.3 Unicode Literals in Python Source Code . 5
2.4 Unicode Properties . 6
2.5 Comparing Strings . 7
2.6 Unicode Regular Expressions . 8
2.7 引用文献 . 8

3 Reading and Writing Unicode Data 8
3.1 Unicode filenames . 9
3.2 Tips for Writing Unicode-aware Programs . 10
3.3 引用文献 . 11

4 致谢 11

索引 12

发布版本 1.12
本指南讨论了 Python对于表达文本数据的 Unicode规范的支持，并且解释了人们试图使用 Unicode时经
常遇到的问题。

1

1 Unicode概述

1.1 定义

如今的程序需要具有处理许多不同类型字符的能力。应用程序常常需要国际化以便以用户可选择的不同
语言显示信息和输出。同一个程序可能需要以英语、法语、日语、希伯来语或俄语输出错误信息。网页
内容可能由任何语言写成，并且可能包含不同的表情符号。Python的字符串类型使用 Unicode标准来表
示字符，这使 Python程序能够正常处理所有这些可能的字符。
Unicode规范 (https://www.unicode.org/)旨在列出人类语言中用到的每个字符，并赋予每个字符唯一的编
码。该规范持续进行修订和更新以添加新的语言和符号。

一个 **字符 **是文本的最小可能部件。‘A’、‘B’、‘C’等都是不同的字符。‘È’和‘Í’也一样。字符
会随着语言或者上下文的变化而变化。比如，‘Ⅰ’是一个表示“罗马数字 1”的字符，它与大写字母‘I’
不同。它们常常看起来相同，但这是两个有着不同含义的不同字符。

The Unicode standard describes how characters are represented by code points. A code point value is an integer
in the range 0 to 0x10FFFF (about 1.1 million values, the actual number assigned is less than that). In the standard
and in this document, a code point is written using the notation U+265E to mean the character with value 0x265e
(9,822 in decimal).
Unicode标准包含了许多表格来列出字符和对应的码位。

0061 'a'; LATIN SMALL LETTER A
0062 'b'; LATIN SMALL LETTER B
0063 'c'; LATIN SMALL LETTER C
...
007B '{'; LEFT CURLY BRACKET
...
2167 'Ⅷ'; ROMAN NUMERAL EIGHT
2168 'Ⅸ'; ROMAN NUMERAL NINE
...
265E ' '; BLACK CHESS KNIGHT
265F ' '; BLACK CHESS PAWN
...
1F600 ' '; GRINNING FACE
1F609 ' '; WINKING FACE
...

严格地说，这些定义暗示了这样的说法是没有意义的：“这是字符 U+265E”。U+265E是一个码位，其
代表了某特定的字符——在这一情形下，它代表了字符“国际象棋黑方骑士（黑马）”‘♞’。在非正式上
下文中，码位和字符的差异有时会被忽略。

一个字符在屏幕上或在纸上被表示为一组图形元素，被称为 **字形 **。比如，大写字母 A的字形，是
斜向的两笔和水平的一笔，而具体的细节取决于所使用的字体。大部分 Python代码不必担心字形，找到
应被显示的正确字形一般来说是用户图形界面工具箱或者终端的字体渲染器的工作。

1.2 编码

上一段可以归结为：一个 Unicode字符串是一系列码位（从 0到 0x10FFFF或者说十进制的 1,114,111的
数字）组成的序列。这一序列在内存中需要被表示为一组 **码元 **，然后 **码元 **会对应到包含八
个二进制位的字节。将 Unicode字符串翻译成字节序列的规则被称为 **字符编码 **，或者 **编码 **。
你可能会想到的第一种编码是使用一个 32位的整数来代表一个代码位，然后使用 CPU对 32位整数的表
达方式。在这一表达方式中，字符串“Python”可能看起来像是这样：

P y t h o n
0x50 00 00 00 79 00 00 00 74 00 00 00 68 00 00 00 6f 00 00 00 6e 00 00 00

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

这个表达方式非常直接，但同时也存在一些问题。

2

https://www.unicode.org/
https://www.unicode.org/versions/latest/#Summary

1. 不够方便；不同的处理器对字节的排序不同。
2. 非常浪费空间。多数编码都小于 127，或者 255，所以很多空间都是 0x00。上面的字符串 takes

24 bytes compared to the 6 bytes needed for an ASCII representation. Increased RAM usage doesn’t matter
too much (desktop computers have gigabytes of RAM, and strings aren’t usually that large), but expanding our
usage of disk and network bandwidth by a factor of 4 is intolerable.

3. It’s not compatible with existing C functions such as strlen(), so a new family of wide string functions
would need to be used.

Therefore this encoding isn’t used very much, and people instead choose other encodings that are more efficient and
convenient, such as UTF-8.
UTF-8 is one of the most commonly used encodings, and Python often defaults to using it. UTF stands for ”Unicode
Transformation Format”, and the ’8’ means that 8-bit values are used in the encoding. (There are also UTF-16 and
UTF-32 encodings, but they are less frequently used than UTF-8.) UTF-8 uses the following rules:

1. If the code point is < 128, it’s represented by the corresponding byte value.
2. If the code point is >= 128, it’s turned into a sequence of two, three, or four bytes, where each byte of the

sequence is between 128 and 255.
UTF-8 has several convenient properties:

1. It can handle any Unicode code point.
2. A Unicode string is turned into a sequence of bytes that contains embedded zero bytes only where they rep-

resent the null character (U+0000). This means that UTF-8 strings can be processed by C functions such
as strcpy() and sent through protocols that can’t handle zero bytes for anything other than end-of-string
markers.

3. A string of ASCII text is also valid UTF-8 text.
4. UTF-8 is fairly compact; the majority of commonly used characters can be represented with one or two bytes.
5. If bytes are corrupted or lost, it’s possible to determine the start of the next UTF-8-encoded code point and

resynchronize. It’s also unlikely that random 8-bit data will look like valid UTF-8.
6. UTF-8 is a byte oriented encoding. The encoding specifies that each character is represented by a specific

sequence of one or more bytes. This avoids the byte-ordering issues that can occur with integer and word
oriented encodings, like UTF-16 and UTF-32, where the sequence of bytes varies depending on the hardware
on which the string was encoded.

1.3 引用文献

The Unicode Consortium site has character charts, a glossary, and PDF versions of the Unicode specification. Be
prepared for some difficult reading. A chronology of the origin and development of Unicode is also available on the
site.
On the Computerphile Youtube channel, Tom Scott briefly discusses the history of Unicode and UTF-8 (9 minutes
36 seconds).
To help understand the standard, Jukka Korpela has written an introductory guide to reading the Unicode character
tables.
Another good introductory article was written by Joel Spolsky. If this introduction didn’t make things clear to you,
you should try reading this alternate article before continuing.
Wikipedia entries are often helpful; see the entries for ”character encoding” and UTF-8, for example.

3

https://www.unicode.org
https://www.unicode.org/history/
https://www.youtube.com/watch?v=MijmeoH9LT4
http://jkorpela.fi/unicode/guide.html
https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/
https://en.wikipedia.org/wiki/Character_encoding
https://en.wikipedia.org/wiki/UTF-8

2 Python’s Unicode Support

Now that you’ve learned the rudiments of Unicode, we can look at Python’s Unicode features.

2.1 The String Type

Since Python 3.0, the language’sstr type contains Unicode characters, meaning any string created using"unicode
rocks!", 'unicode rocks!', or the triple-quoted string syntax is stored as Unicode.
The default encoding for Python source code is UTF-8, so you can simply include a Unicode character in a string
literal:

try:
with open('/tmp/input.txt', 'r') as f:

...
except OSError:

'File not found' error message.
print("Fichier non trouvé")

Side note: Python 3 also supports using Unicode characters in identifiers:

répertoire = "/tmp/records.log"
with open(répertoire, "w") as f:

f.write("test\n")

If you can’t enter a particular character in your editor or want to keep the source code ASCII-only for some reason,
you can also use escape sequences in string literals. (Depending on your system, you may see the actual capital-delta
glyph instead of a u escape.)

>>> "\N{GREEK CAPITAL LETTER DELTA}" # Using the character name
'\u0394'
>>> "\u0394" # Using a 16-bit hex value
'\u0394'
>>> "\U00000394" # Using a 32-bit hex value
'\u0394'

In addition, one can create a string using the decode() method of bytes. This method takes an encoding argu-
ment, such as UTF-8, and optionally an errors argument.
The errors argument specifies the response when the input string can’t be converted according to the encoding’s
rules. Legal values for this argument are 'strict' (raise a UnicodeDecodeError exception), 'replace'
(use U+FFFD, REPLACEMENT CHARACTER), 'ignore' (just leave the character out of the Unicode result), or
'backslashreplace' (inserts a \xNN escape sequence). The following examples show the differences:

>>> b'\x80abc'.decode("utf-8", "strict")
Traceback (most recent call last):

...
UnicodeDecodeError: 'utf-8' codec can't decode byte 0x80 in position 0:

invalid start byte
>>> b'\x80abc'.decode("utf-8", "replace")
'\ufffdabc'
>>> b'\x80abc'.decode("utf-8", "backslashreplace")
'\\x80abc'
>>> b'\x80abc'.decode("utf-8", "ignore")
'abc'

Encodings are specified as strings containing the encoding’s name. Python comes with roughly 100 different encod-
ings; see the Python Library Reference at standard-encodings for a list. Some encodings have multiple names; for
example, 'latin-1', 'iso_8859_1' and '8859’ are all synonyms for the same encoding.

4

One-character Unicode strings can also be created with the chr() built-in function, which takes integers and returns
a Unicode string of length 1 that contains the corresponding code point. The reverse operation is the built-in ord()
function that takes a one-character Unicode string and returns the code point value:

>>> chr(57344)
'\ue000'
>>> ord('\ue000')
57344

2.2 Converting to Bytes

The opposite method of bytes.decode() is str.encode(), which returns a bytes representation of the
Unicode string, encoded in the requested encoding.
The errors parameter is the same as the parameter of the decode() method but supports a few more possible
handlers. As well as 'strict', 'ignore', and 'replace' (which in this case inserts a question mark in-
stead of the unencodable character), there is also 'xmlcharrefreplace' (inserts an XML character reference),
backslashreplace (inserts a \uNNNN escape sequence) and namereplace (inserts a \N{...} escape se-
quence).
The following example shows the different results:

>>> u = chr(40960) + 'abcd' + chr(1972)
>>> u.encode('utf-8')
b'\xea\x80\x80abcd\xde\xb4'
>>> u.encode('ascii')
Traceback (most recent call last):

...
UnicodeEncodeError: 'ascii' codec can't encode character '\ua000' in

position 0: ordinal not in range(128)
>>> u.encode('ascii', 'ignore')
b'abcd'
>>> u.encode('ascii', 'replace')
b'?abcd?'
>>> u.encode('ascii', 'xmlcharrefreplace')
b'ꀀabcd޴'
>>> u.encode('ascii', 'backslashreplace')
b'\\ua000abcd\\u07b4'
>>> u.encode('ascii', 'namereplace')
b'\\N{YI SYLLABLE IT}abcd\\u07b4'

The low-level routines for registering and accessing the available encodings are found in the codecs module. Im-
plementing new encodings also requires understanding the codecs module. However, the encoding and decoding
functions returned by this module are usually more low-level than is comfortable, and writing new encodings is a
specialized task, so the module won’t be covered in this HOWTO.

2.3 Unicode Literals in Python Source Code

In Python source code, specific Unicode code points can be written using the \u escape sequence, which is followed
by four hex digits giving the code point. The \U escape sequence is similar, but expects eight hex digits, not four:

>>> s = "a\xac\u1234\u20ac\U00008000"
... # ^^^^ two-digit hex escape
... # ^^^^^^ four-digit Unicode escape
... # ^^^^^^^^^^ eight-digit Unicode escape
>>> [ord(c) for c in s]
[97, 172, 4660, 8364, 32768]

5

Using escape sequences for code points greater than 127 is fine in small doses, but becomes an annoyance if you’re
using many accented characters, as you would in a program with messages in French or some other accent-using
language. You can also assemble strings using the chr() built-in function, but this is even more tedious.
Ideally, you’d want to be able to write literals in your language’s natural encoding. You could then edit Python source
code with your favorite editor which would display the accented characters naturally, and have the right characters
used at runtime.
Python supports writing source code in UTF-8 by default, but you can use almost any encoding if you declare the
encoding being used. This is done by including a special comment as either the first or second line of the source file:

#!/usr/bin/env python
-*- coding: latin-1 -*-

u = 'abcdé'
print(ord(u[-1]))

The syntax is inspired by Emacs’s notation for specifying variables local to a file. Emacs supports many different
variables, but Python only supports ’coding’. The -*- symbols indicate to Emacs that the comment is special; they
have no significance to Python but are a convention. Python looks for coding: name or coding=name in the
comment.
If you don’t include such a comment, the default encoding used will be UTF-8 as already mentioned. See also PEP
263 for more information.

2.4 Unicode Properties

The Unicode specification includes a database of information about code points. For each defined code point, the
information includes the character’s name, its category, the numeric value if applicable (for characters representing
numeric concepts such as the Roman numerals, fractions such as one-third and four-fifths, etc.). There are also
display-related properties, such as how to use the code point in bidirectional text.
The following program displays some information about several characters, and prints the numeric value of one
particular character:

import unicodedata

u = chr(233) + chr(0x0bf2) + chr(3972) + chr(6000) + chr(13231)

for i, c in enumerate(u):
print(i, '%04x' % ord(c), unicodedata.category(c), end=" ")
print(unicodedata.name(c))

Get numeric value of second character
print(unicodedata.numeric(u[1]))

When run, this prints:

0 00e9 Ll LATIN SMALL LETTER E WITH ACUTE
1 0bf2 No TAMIL NUMBER ONE THOUSAND
2 0f84 Mn TIBETAN MARK HALANTA
3 1770 Lo TAGBANWA LETTER SA
4 33af So SQUARE RAD OVER S SQUARED
1000.0

The category codes are abbreviations describing the nature of the character. These are grouped into categories such
as ”Letter”, ”Number”, ”Punctuation”, or ”Symbol”, which in turn are broken up into subcategories. To take the
codes from the above output, 'Ll' means ’Letter, lowercase’, 'No' means ”Number, other”, 'Mn' is ”Mark,
nonspacing”, and 'So' is ”Symbol, other”. See the General Category Values section of the Unicode Character
Database documentation for a list of category codes.

6

https://www.python.org/dev/peps/pep-0263
https://www.python.org/dev/peps/pep-0263
https://www.unicode.org/reports/tr44/#General_Category_Values
https://www.unicode.org/reports/tr44/#General_Category_Values

2.5 Comparing Strings

Unicode adds some complication to comparing strings, because the same set of characters can be represented by
different sequences of code points. For example, a letter like ’ê’ can be represented as a single code point U+00EA,
or as U+0065 U+0302, which is the code point for ’e’ followed by a code point for ’COMBINING CIRCUMFLEX
ACCENT’. These will produce the same output when printed, but one is a string of length 1 and the other is of length
2.
One tool for a case-insensitive comparison is the casefold() string method that converts a string to a case-
insensitive form following an algorithm described by the Unicode Standard. This algorithm has special handling for
characters such as the German letter ’ß’ (code point U+00DF), which becomes the pair of lowercase letters ’ss’.

>>> street = 'Gürzenichstraße'
>>> street.casefold()
'gürzenichstrasse'

A second tool is the unicodedata module’s normalize() function that converts strings to one of several
normal forms, where letters followed by a combining character are replaced with single characters. normalize()
can be used to perform string comparisons that won’t falsely report inequality if two strings use combining characters
differently:

import unicodedata

def compare_strs(s1, s2):
def NFD(s):

return unicodedata.normalize('NFD', s)

return NFD(s1) == NFD(s2)

single_char = 'ê'
multiple_chars = '\N{LATIN SMALL LETTER E}\N{COMBINING CIRCUMFLEX ACCENT}'
print('length of first string=', len(single_char))
print('length of second string=', len(multiple_chars))
print(compare_strs(single_char, multiple_chars))

When run, this outputs:

$ python3 compare-strs.py
length of first string= 1
length of second string= 2
True

The first argument to the normalize() function is a string giving the desired normalization form, which can be
one of ’NFC’, ’NFKC’, ’NFD’, and ’NFKD’.
The Unicode Standard also specifies how to do caseless comparisons:

import unicodedata

def compare_caseless(s1, s2):
def NFD(s):

return unicodedata.normalize('NFD', s)

return NFD(NFD(s1).casefold()) == NFD(NFD(s2).casefold())

Example usage
single_char = 'ê'
multiple_chars = '\N{LATIN CAPITAL LETTER E}\N{COMBINING CIRCUMFLEX ACCENT}'

print(compare_caseless(single_char, multiple_chars))

This will print True. (Why is NFD() invoked twice? Because there are a few characters that make casefold()
return a non-normalized string, so the result needs to be normalized again. See section 3.13 of the Unicode Standard

7

for a discussion and an example.)

2.6 Unicode Regular Expressions

The regular expressions supported by the re module can be provided either as bytes or strings. Some of the special
character sequences such as \d and \w have different meanings depending on whether the pattern is supplied as bytes
or a string. For example, \d will match the characters [0-9] in bytes but in strings will match any character that’s
in the 'Nd' category.
The string in this example has the number 57 written in both Thai and Arabic numerals:

import re
p = re.compile(r'\d+')

s = "Over \u0e55\u0e57 57 flavours"
m = p.search(s)
print(repr(m.group()))

When executed, \d+ will match the Thai numerals and print them out. If you supply the re.ASCII flag to
compile(), \d+ will match the substring ”57” instead.
Similarly, \w matches a wide variety of Unicode characters but only [a-zA-Z0-9_] in bytes or if re.ASCII is
supplied, and \s will match either Unicode whitespace characters or [\t\n\r\f\v].

2.7 引用文献

Some good alternative discussions of Python’s Unicode support are:
• Processing Text Files in Python 3, by Nick Coghlan.
• Pragmatic Unicode, a PyCon 2012 presentation by Ned Batchelder.

The str type is described in the Python library reference at textseq.
The documentation for the unicodedata module.
The documentation for the codecs module.
Marc-André Lemburg gave a presentation titled ”Python and Unicode” (PDF slides) at EuroPython 2002. The slides
are an excellent overview of the design of Python 2’s Unicode features (where the Unicode string type is called
unicode and literals start with u).

3 Reading and Writing Unicode Data

Once you’ve written some code that works with Unicode data, the next problem is input/output. How do you get
Unicode strings into your program, and how do you convert Unicode into a form suitable for storage or transmission?
It’s possible that you may not need to do anything depending on your input sources and output destinations; you should
check whether the libraries used in your application support Unicode natively. XML parsers often return Unicode
data, for example. Many relational databases also support Unicode-valued columns and can return Unicode values
from an SQL query.
Unicode data is usually converted to a particular encoding before it gets written to disk or sent over a socket. It’s
possible to do all the work yourself: open a file, read an 8-bit bytes object from it, and convert the bytes with
bytes.decode(encoding). However, the manual approach is not recommended.
One problem is the multi-byte nature of encodings; one Unicode character can be represented by several bytes. If
you want to read the file in arbitrary-sized chunks (say, 1024 or 4096 bytes), you need to write error-handling code
to catch the case where only part of the bytes encoding a single Unicode character are read at the end of a chunk.
One solution would be to read the entire file into memory and then perform the decoding, but that prevents you from

8

http://python-notes.curiousefficiency.org/en/latest/python3/text_file_processing.html
https://nedbatchelder.com/text/unipain.html
https://downloads.egenix.com/python/Unicode-EPC2002-Talk.pdf

working with files that are extremely large; if you need to read a 2 GiB file, you need 2 GiB of RAM. (More, really,
since for at least a moment you’d need to have both the encoded string and its Unicode version in memory.)
The solution would be to use the low-level decoding interface to catch the case of partial coding sequences. The work
of implementing this has already been done for you: the built-in open() function can return a file-like object that
assumes the file’s contents are in a specified encoding and accepts Unicode parameters for methods such as read()
and write(). This works through open()’s encoding and errors parameters which are interpreted just like those
in str.encode() and bytes.decode().
Reading Unicode from a file is therefore simple:

with open('unicode.txt', encoding='utf-8') as f:
for line in f:

print(repr(line))

It’s also possible to open files in update mode, allowing both reading and writing:

with open('test', encoding='utf-8', mode='w+') as f:
f.write('\u4500 blah blah blah\n')
f.seek(0)
print(repr(f.readline()[:1]))

The Unicode character U+FEFF is used as a byte-order mark (BOM), and is often written as the first character of a
file in order to assist with autodetection of the file’s byte ordering. Some encodings, such as UTF-16, expect a BOM
to be present at the start of a file; when such an encoding is used, the BOM will be automatically written as the first
character and will be silently dropped when the file is read. There are variants of these encodings, such as ’utf-16-le’
and ’utf-16-be’ for little-endian and big-endian encodings, that specify one particular byte ordering and don’t skip the
BOM.
In some areas, it is also convention to use a ”BOM” at the start of UTF-8 encoded files; the name is misleading since
UTF-8 is not byte-order dependent. The mark simply announces that the file is encoded in UTF-8. For reading such
files, use the ’utf-8-sig’ codec to automatically skip the mark if present.

3.1 Unicode filenames

Most of the operating systems in common use today support filenames that contain arbitrary Unicode characters.
Usually this is implemented by converting the Unicode string into some encoding that varies depending on the system.
Today Python is converging on using UTF-8: Python on MacOS has used UTF-8 for several versions, and Python 3.6
switched to using UTF-8 on Windows as well. On Unix systems, there will only be a filesystem encoding if you’ve
set the LANG or LC_CTYPE environment variables; if you haven’t, the default encoding is again UTF-8.
The sys.getfilesystemencoding() function returns the encoding to use on your current system, in case
you want to do the encoding manually, but there’s not much reason to bother. When opening a file for reading or
writing, you can usually just provide the Unicode string as the filename, and it will be automatically converted to the
right encoding for you:

filename = 'filename\u4500abc'
with open(filename, 'w') as f:

f.write('blah\n')

Functions in the os module such as os.stat() will also accept Unicode filenames.
The os.listdir() function returns filenames, which raises an issue: should it return the Unicode version of
filenames, or should it return bytes containing the encoded versions? os.listdir() can do both, depending on
whether you provided the directory path as bytes or a Unicode string. If you pass a Unicode string as the path,
filenames will be decoded using the filesystem’s encoding and a list of Unicode strings will be returned, while passing
a byte path will return the filenames as bytes. For example, assuming the default filesystem encoding is UTF-8,
running the following program:

9

fn = 'filename\u4500abc'
f = open(fn, 'w')
f.close()

import os
print(os.listdir(b'.'))
print(os.listdir('.'))

will produce the following output:

$ python listdir-test.py
[b'filename\xe4\x94\x80abc', ...]
['filename\u4500abc', ...]

The first list contains UTF-8-encoded filenames, and the second list contains the Unicode versions.
Note that on most occasions, you should can just stick with using Unicode with these APIs. The bytes APIs should
only be used on systems where undecodable file names can be present; that’s pretty much only Unix systems now.

3.2 Tips for Writing Unicode-aware Programs

This section provides some suggestions on writing software that deals with Unicode.
The most important tip is:

Software should only work with Unicode strings internally, decoding the input data as soon as possible
and encoding the output only at the end.

If you attempt to write processing functions that accept both Unicode and byte strings, you will find your program
vulnerable to bugs wherever you combine the two different kinds of strings. There is no automatic encoding or
decoding: if you do e.g. str + bytes, a TypeError will be raised.
When using data coming from a web browser or some other untrusted source, a common technique is to check for
illegal characters in a string before using the string in a generated command line or storing it in a database. If you’re
doing this, be careful to check the decoded string, not the encoded bytes data; some encodings may have interesting
properties, such as not being bijective or not being fully ASCII-compatible. This is especially true if the input data
also specifies the encoding, since the attacker can then choose a clever way to hide malicious text in the encoded
bytestream.

Converting Between File Encodings

The StreamRecoder class can transparently convert between encodings, taking a stream that returns data in
encoding #1 and behaving like a stream returning data in encoding #2.
For example, if you have an input file f that’s in Latin-1, you can wrap it with a StreamRecoder to return bytes
encoded in UTF-8:

new_f = codecs.StreamRecoder(f,
en/decoder: used by read() to encode its results and
by write() to decode its input.
codecs.getencoder('utf-8'), codecs.getdecoder('utf-8'),

reader/writer: used to read and write to the stream.
codecs.getreader('latin-1'), codecs.getwriter('latin-1'))

10

Files in an Unknown Encoding

What can you do if you need to make a change to a file, but don’t know the file’s encoding? If you know the
encoding is ASCII-compatible and only want to examine or modify the ASCII parts, you can open the file with the
surrogateescape error handler:

with open(fname, 'r', encoding="ascii", errors="surrogateescape") as f:
data = f.read()

make changes to the string 'data'

with open(fname + '.new', 'w',
encoding="ascii", errors="surrogateescape") as f:

f.write(data)

The surrogateescape error handler will decode any non-ASCII bytes as code points in a special range
running from U+DC80 to U+DCFF. These code points will then turn back into the same bytes when the
surrogateescape error handler is used to encode the data and write it back out.

3.3 引用文献

One section of Mastering Python 3 Input/Output, a PyCon 2010 talk by David Beazley, discusses text processing and
binary data handling.
The PDF slides for Marc-André Lemburg’s presentation ”Writing Unicode-aware Applications in Python” discuss
questions of character encodings as well as how to internationalize and localize an application. These slides cover
Python 2.x only.
The Guts of Unicode in Python is a PyCon 2013 talk by Benjamin Peterson that discusses the internal Unicode
representation in Python 3.3.

4 致谢

The initial draft of this document was written by Andrew Kuchling. It has since been revised further by Alexander
Belopolsky, Georg Brandl, Andrew Kuchling, and Ezio Melotti.
Thanks to the following people who have noted errors or offered suggestions on this article: Éric Araujo, Nicholas
Bastin, Nick Coghlan, Marius Gedminas, Kent Johnson, Ken Krugler, Marc-André Lemburg, Martin von Löwis,
Terry J. Reedy, Serhiy Storchaka, Eryk Sun, Chad Whitacre, Graham Wideman.

11

http://pyvideo.org/video/289/pycon-2010--mastering-python-3-i-o
https://downloads.egenix.com/python/LSM2005-Developing-Unicode-aware-applications-in-Python.pdf
http://pyvideo.org/video/1768/the-guts-of-unicode-in-python

索引

P
Python 提高建议

PEP 263, 6

12

	Unicode 概述
	定义
	编码
	引用文献

	Python's Unicode Support
	The String Type
	Converting to Bytes
	Unicode Literals in Python Source Code
	Unicode Properties
	Comparing Strings
	Unicode Regular Expressions
	引用文献

	Reading and Writing Unicode Data
	Unicode filenames
	Tips for Writing Unicode-aware Programs
	引用文献

	致谢
	索引

